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Abstract
A general expression is obtained for the matrix element of an m-body operator
between coherent states constructed from multiple orthogonal coherent boson
species. This allows the coherent state formalism to be applied to states
possessing an arbitrarily large number of intrinsic excitation quanta. For
illustration, the formalism is applied to the two-dimensional vibron model
(U(3) model), to calculate the energies of all excited states in the large-N limit.

PACS numbers: 03.65.Fd, 33.20.Tp

1. Introduction

Methods based upon coherent states [1] have proved to be widely useful in investigating
the ground state properties of algebraic models. In algebraic models, the Hamiltonian and
all physical operators are constructed from the elements of a Lie algebra, usually from a
bosonic realization of U(n). Such models have been applied extensively to the spectroscopy
of many-body systems, including nuclei [2] and molecules [3]. The coherent states of an
algebraic model are obtained by repeated action of a general linear combination of boson
creation operators on the vacuum state. As variational trial states, the coherent states allow the
estimation of the ground state energies and properties, yielding results which become exact in
the infinite boson number limit [4, 5]. They are also essential in defining the classical limit
for the model [5], providing the geometric coordinates or dynamical variables of the model.

Coherent states may also be used to study the intrinsic excitation modes of an algebraic
system [6–15], through the construction of coherent states orthogonal to the ground state.
However, application of this method has generally been limited to excited states involving only
one intrinsic excitation quantum, or at most two [15], due to the complexity of calculating the
necessary matrix elements. In the present work, a general expression is obtained for the matrix
element of an m-body operator between coherent states constructed from multiple orthogonal
linear combinations of boson creation operators. This allows the coherent state formalism to
be applied to states possessing an arbitrarily large number of intrinsic excitation quanta.
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The necessary definitions for the basic ground state (condensate) coherent state are first
presented, and the results for expectation values with respect to this state are reviewed
(section 2). The general result for excited coherent states is then established (section 3).
As a simple illustration, calculations are carried out for excited states in the SO(3) dynamical
symmetry limit of the molecular two-dimensional vibron model [16] (section 4).

2. Condensate coherent state

An algebraic model based upon a bosonic realization of U(n) is obtained by defining n bosonic
creation operators b

†
1, b

†
2, . . . , b

†
n obeying the canonical commutation relations [bi, bj ] = 0,[

bi, b
†
j

] = δi,j and
[
b
†
i , b

†
j

] = 0. The set of all possible bilinears of a creation and an

annihilation operator then forms a basis b
†
1b1, b

†
1b2, . . . , b

†
nbn for the algebra. The physical

operators of the model, such as the Hamiltonian, the angular momentum and transition
operators, are constructed as polynomials in the b

†
i bj . These operators act on the states

of the Fock space created by b
†
1, b

†
2, . . . , b

†
n.

The condensate coherent state is defined in terms of the ‘condensate boson’ creation
operator, which is a general linear combination

B†
c ≡ α1b

†
1 + α2b

†
2 + · · · + αnb

†
n, (1)

with complex coefficients satisfying the normalization convention
∑n

i=1 α∗
i αi = 1. The

normalized condensate coherent state is then

|N;α1, . . . , αn〉 ≡ 1√
N !

(
B†

c

)N |0〉. (2)

This state is an eigenstate of the total number operator N̂ ≡ ∑n
i=1 b

†
i bi .

The expectation value of a one-body or two-body operator with respect to the condensate
(2) was deduced by Van Isacker and Chen [17], using arguments based upon formal
differentiation. Here let us derive an explicit result for the expectation value of an arbitrary
m-body operator, since the results of section 3 can be obtained as a natural extension. First,
for an annihilation operator br , note that

[
br, B

†
c

] = αr , from which the relation[
br,

(
B†

c

)N ] = Nαr

(
B†

c

)N−1
(3)

follows by the product rule for commutators. The action of br on the condensate is thus

br |N;α1, . . . , αn〉 =
√

Nαr |N − 1;α1, . . . , αn〉. (4)

Repeated application yields the expectation value of an arbitrary m-body operator,

〈N;α1, . . . , αn|
(

m∏
i=1

b
†
r ′
i

)(
m∏

i=1

bri

)
|N;α1, . . . , αn〉 = Nm

m∏
i=1

α∗
r ′
i
αri

, (5)

where the underlined superscript indicates the falling factorial [18], defined by mn ≡
m(m − 1) · · · (m − n + 1).

3. General coherent state

For the study of excited states, it is necessary to consider coherent states which are orthogonal
to the condensate state. These are constructed using multiple different coherent boson species
B

†
s (s = 1, . . . , S), defined as linear combinations

B†
s ≡ αs,1b

†
1 + αs,2b

†
2 + · · · + αs,nb

†
n (6)
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of the basic boson creation operators. (The procedure for obtaining values of the coefficients
αs,i appropriate to a given model is discussed in, e.g., [11].) The coefficients αs,i are
chosen to obey the orthonormalization convention

∑n
i=1 α∗

s ′,iαs,i = δs ′,s . Consequently, the

coherent bosons satisfy canonical commutation relations [Bs ′ , Bs] = 0,
[
Bs ′ , B

†
s

] = δs ′,s and[
B

†
s ′ , B

†
s

] = 0. The different B
†
s represent the ground state condensate boson and one or more

orthogonal excitation modes. The normalized multi-species coherent state is

|N1 · · · NS〉 ≡
(

S∏
s=1

1√
Ns!

(
B†

s

)Ns

)
|0〉. (7)

The coherent state is an eigenstate of the total number operator, of eigenvalue N = ∑S
s=1 Ns .

States of different coherent boson occupation numbers N1, . . . , NS are orthogonal.
The matrix element of an arbitrary m-body operator with respect to two multi-species

coherent states can now be deduced following the approach of section 2. The commutation
relations generalize to

[
br, B

†
s

] = αs,r and[
br,

S∏
s=1

(
B†

s

)Ns

]
=

S∑
t=1

Ntαt,r

[
S∏

s=1

(
B†

s

)Ns−δs,t

]
. (8)

The action of br on the multi-species coherent state is thus

br |N1 · · ·NS〉 =
S∑

t=1

√
Ntαt,r |(N1 − δ1,t ) · · · (NS − δS,t )〉. (9)

This is analogous to the result of equation (4), but with a separate term arising from the action
of br on each species of coherent boson contributing to the coherent state. It is useful to define
a counting function ν(t1, . . . , tm; s) ≡ ∑m

i=1 δti ,s , giving the number of the ti which are equal
to s. Then, for a product of annihilation operators acting on the coherent state,(

m∏
i=1

bri

)
|N1 · · · NS〉 =

S∑
t1,...,tm=1

[
S∏

s=1

√
N

ν(t1,...,tm;s)
s

] (
m∏

i=1

αti ,ri

)

× |(N1 − ν(t1, . . . , tm; 1)) · · · (NS − ν(t1, . . . , tm; S))〉. (10)

The matrix element of an arbitrary m-body operator (m � 1) with respect to two arbitrary
multi-species coherent states is the inner product of two such expressions,

〈N ′
1 · · · N ′

S |
(

m∏
i=1

b
†
r ′
i

)(
m∏

i=1

bri

)
|N1 · · · NS〉

=
S∑

t ′1,...,t
′
m

t1,...,tm
=1

[
S∏

s=1

δN ′
s−ν ′

s ,Ns−νs

√
N

′ν ′
s

s N
νs

s

] (
m∏

i=1

α∗
t ′i ,r

′
i
αti ,ri

)
, (11)

where the abbreviations ν ′
s ≡ ν(t ′1, . . . , t

′
m; s) and νs ≡ ν(t1, . . . , tm; s) have been used.

Three stages are involved in evaluating the matrix element of a general operator: re-
expression of the operator in terms of normal-ordered m-body terms, evaluation of the matrix
elements of these by equation (11), and simplification of the result. For complicated operators
or if many coherent boson species are involved, these steps can most effectively be carried out
though computer-based symbolic manipulation. A few useful special cases of equation (11)
are summarized in the appendix.

The multiple sum in equation (11) nominally contains S2m terms. However, for fixed
numerical values of the Ns and N ′

s , many of the terms vanish identically due to the restriction



6388 M A Caprio

Table 1. The number of terms in general contributing to the sum in equation (11), not vanishing
due to the delta symbol constraint, for various values of S and m. In practice, some of these terms
may also vanish as a consequence of zero values for the falling factorials or αs,i coefficients.

Contributing terms

S One-body Two-body Three-body Four-body

2 2 6 20 70
3 3 15 93 639
4 4 28 256 2716
5 5 45 545 7885

on indices imposed by the product of Kronecker delta symbols. A summary of the number
of nonvanishing terms for various S and m is given in table 1. A given species s of coherent
boson is overannihilated when Ns − ν(s) < 0 or N ′

s − ν ′(s) < 0, yielding a vanishing falling
factorial in equation (11). Thus, additional terms vanish if the expression is evaluated for a
small value (<m) of any of the Ns or N ′

s , as typically occurs when the lowest lying excited
states are considered. If the multiple sum in equation (11) is instead to be evaluated with the
Ns and N ′

s retained as variables, all terms involving the same product of falling factorials may
be collected. This product is identical for terms with the same values of all the ν(s) and ν ′(s).
Since 0 � ν(s) � m and

∑S
s=1 ν(s) = m, and similarly for ν ′(s), the number of distinct terms

after collection is the square of the number of possible partitions of m over S bins.
Multi-species coherent states of the form (7) are also encountered as the condensate states

of systems involving multiple constituents, each separately conserved. An example from
nuclear physics is the proton–neutron interacting boson model (IBM-2) [2], in which proton
pairs (created by s

†
π,0, d

†
π,−2, d

†
π,−1, d

†
π,0, d

†
π,+1, d

†
π,+2) and neutron pairs (created by s

†
ν,0, d

†
ν,−2,

d
†
ν,−1, d

†
ν,0, d

†
ν,+1, d

†
ν,+2) are separately conserved. The physical operators are constructed

from the elements of a Lie algebra U1(n) ⊗ U2(n) ⊗ · · ·, and a condensate state with good
boson number for each constituent is constructed as ∝ (

B
†
c1

)N1
(
B

†
c2

)N2 · · · |0〉. Since the

condensate bosons B
†
cρ (ρ = 1, 2, . . .) are constructed from disjoint sets of boson operators,

the expectation value of an m-body operator in general factorizes into the product of simple
expectation values of type (5) (e.g., [19], (C1)). However, the general result (11) for the multi-
species coherent state matrix element can provide the simplest framework for computer-based
symbolic evaluation [20].

4. Intrinsic excitations of the two-dimensional vibron model

The two-dimensional vibron model [16] is the U(3) algebraic model, describing a system
containing a dipole degree of freedom constrained to planar motion. The basic example
of such a system is a triatomic linear bender molecule, but the model is easily extended to
more complex molecular systems. The U(3) algebra is realized in terms of the three bosonic
operators σ †, τ

†
x and τ

†
y , which satisfy canonical commutation relations. It is convenient

to define circular bosons τ
†
± ≡ ∓(

τ
†
x ± iτ †

y

)/√
2 [21, 22]1, such that the operators σ †, τ

†
+

and τ
†
− carry 0, +1 and −1 units of two-dimensional angular momentum. The physical

1 The definitions τ
†
± = ∓(τ

†
x ± iτ †

y )/
√

2 [21, 22] are used, rather than τ
†
± = (τ

†
x ± iτ †

y )/
√

2 [16]. This choice is
necessary for D̂± to be the physical dipole operators and provides a closer correspondence with the treatment of the
three-dimensional vibron model [11].
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operators include the angular momentum operator l̂ ≡ τ
†
+τ+ − τ

†
−τ−, the dipole operators

D̂± ≡ ±√
2
(
τ
†
±σ − σ †τ∓

)
, and the quadrupole operators Q̂± ≡ √

2τ
†
±τ∓.

The U(3) algebra contains the subalgebra chains [16]

U(3) ⊃
{

U(2) ⊃ SO(2)

SO(3) ⊃ SO(2).
(12)

The dynamical symmetry associated with the U(2) chain yields spectra matching those of the
cylindrical oscillator (the Pöschl–Teller potential), while the dynamical symmetry associated
with the SO(3) chain yields spectra like those of the displaced cylindrical oscillator (the
Morse potential). The SO(3) limit is used in the following illustrations, as the less trivial
case. The SO(3) subalgebra is spanned by {D̂+, D̂−, l̂} and has the quadratic Casimir operator
Ŵ 2 ≡ (D̂+D̂− + D̂−D̂+)/2 + l̂ 2. The SO(2) subalgebra is simply the two-dimensional angular
momentum algebra, containing l̂. The simplest Hamiltonian with SO(3) dynamical symmetry
is H = −Ŵ , which has eigenvalues

E(N, v, l) = −N(N + 1) + 4v[(N + 1/2) − v], (13)

with v = 0, 1, . . . , �N/2� and l = −(N − 2v),−(N − 2v) + 1, . . . , + (N − 2v) (figure 1(a)).
The condensate boson and an orthogonal excitation boson for the two-dimensional vibron

model may be defined as

B†
c (r) ≡ 1√

1 + r2

(
σ † + rτ †

x

)
B†

x(r) ≡ 1√
1 + r2

(−rσ † + τ †
x

)
. (14)

(See [11] for further discussion of the choice of boson operators in the vibron model.) The
general excited coherent state is

|NNx; r〉 ≡ 1√
(N − Nx)!Nx!

[
B†

c (r)
]N−Nx

[
B†

x(r)
]Nx |0〉. (15)

The expectation value of the SO(3) Casimir operator with respect to an arbitrary excited
coherent state is evaluated using equation (A.2), yielding

〈NNx; r|Ŵ 2|NNx; r〉 = 2[N + Nx(N − Nx)] +
4

(1 + r2)2
[N(N − 1) − 6Nx(N − Nx)]r

2.

(16)

The equilibrium value of r is found by minimization of the variational energy 〈N0; r|H |N0; r〉,
giving r = 1. With this value of r, the excited coherent state energies are

E(N,Nx) = −N(N + 1) + 4Nx[N − Nx]. (17)

If the intrinsic excitation number Nx is identified with the SO(3) quantum number v,
comparison of equations (13) and (17) shows that these expressions differ only by a term
of order 1/N . Thus, to leading order in 1/N , the coherent state estimate reproduces the
excitation energies for all excited states, as illustrated in figure 1(b).

Transition strengths may be estimated using coherent states, from the squared matrix
element of the transition operator, I ≈ 〈NN ′

x |T̂ |NNx〉2. The coherent state |NNx〉 is not an
angular momentum eigenstate, so the resulting estimate for the transition strength between two
intrinsic excitations is effectively averaged over the many states of different angular momenta
constituting that excitation. This coherent state estimate thus cannot be expected to provide
the exact transition intensity between any two particular angular momentum eigenstates. It
does, however, indicate the general magnitude of the transition strengths and the overall
dependence on the excitation quantum number, and it can be quantitatively accurate if the
angular momentum dependence of transition strengths is weak. (Alternatively, angular
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Figure 1. Comparison of excited coherent state estimates of observables (curves) with exact
values (circles) for the SO(3) dynamical symmetry of the two-dimensional vibron model, with
N = 100. (a) A schematic SO(3) level energy diagram, with arrows indicating the dipole (solid)
and quadrupole (dashed) transitions considered in panels (c) and (d ). (b) Energies of all SO(3)

representations. (c) Intensity of the (l = 1) → (l = 0) dipole transition within each representation.
(d ) Intensity of the (l = 2) → (l = 0) quadrupole transition within each representation (the solid
curve, full circles) and of the (l = 2) → (l = 0) and (l = 0) → (l = 2) �v = −1 transitions
between representations (the dashed curve, open circles). An l2 energy splitting is included in
panel (a) to provide visual separation of levels within an SO(3) representation. All observables are
plotted rescaled by 1/N2.

momentum eigenstates may be projected from the coherent states [9, 11, 23], but this requires
additional machinery beyond simple evaluation of an m-body operator matrix element.)

Dipole infrared transitions in the two-dimensional vibron model are, to leading order,
induced by the operators D̂±, and quadrupole Raman transitions are induced by the operators
Q̂± [3, 16]. The strengths of transitions within an intrinsic excitation are estimated from the
expectation values

〈NNx; r|D̂±|NNx; r〉 = −2(N − 2Nx)
r

1 + r2

〈NNx; r|Q̂±|NNx; r〉 = − 1√
2

Nx + (N − Nx)r
2

1 + r2
,

(18)

and those between successive intrinsic excitations from

〈N(Nx − 1); r|D̂±|NNx; r〉 = −
√

(N − Nx + 1)Nx

1 − r2

1 + r2

〈N(Nx − 1); r|Q̂±|NNx; r〉 = − 1√
2

√
(N − Nx + 1)Nx

r

1 + r2
.

(19)
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The coherent state estimates of transition intensities for the SO(3) dynamical symmetry are
obtained from these equations with r = 1. The estimates are plotted for N = 100 in
figures 1(c) and (d ), together with exact values obtained by numerical diagonalization, as
functions of the excitation quantum number v (or Nx). The coherent state estimate for dipole
transitions closely reproduces the strength of the angular momentum 1 → 0 transition within
an SO(3) representation (figure 1(c)). Dipole transitions between different representations are
forbidden, and the coherent state estimate indeed vanishes. Quadrupole transition strengths
exhibit greater angular momentum dependence within a representation, and the coherent state
estimate is consequently less accurate. The strengths of quadrupole transitions involving
the low angular momentum members of the representations are reproduced to within ∼5%,
except at the highest intrinsic excitation quantum numbers (figure 1(d )). Note that the angular
momentum 2 → 0 and 0 → 2 transitions between two representations (�v = ±1) differ in
strength, and the coherent state estimate consistently behaves as their average.

5. Conclusion

The present results serve as a basis for application of the coherent state formalism to states with
an arbitrary number of intrinsic excitation quanta. This process yields estimates of eigenvalues
and operator matrix elements for excited states valid to leading order in 1/N . The illustration
provided was to a dynamical symmetry limit of a simple model, but the coherent state analysis
will likely be most useful when applied to transitional Hamiltonians, for which analytic results
are not otherwise available.

The coherent state formalism has in the past provided not only a quantitative calculational
tool but, perhaps more importantly, a method for obtaining qualitative understanding of
the equilibrium properties and fundamental modes of a system. Most, if not all, of the
raw numerical results of the coherent state formalism can also be obtained by numerical
diagonalization. It is thus the latter, interpretational aspects of the coherent state formalism,
and the explicit analytic forms obtained for the parameter dependences of observables, which
have proved most useful. The present results for multiply excited states thus might most
productively be used in investigating the general nature of the evolution of a system’s properties
with excitation energy.
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Appendix. Special cases of the general matrix element

Some useful special cases of the general matrix element (11) are given here. If the coherent
states involve only two species of coherent boson (S = 2), then the one-body and two-body
operator matrix elements are

〈(N1 − 1)(N2 + 1)|b†
r ′br |N1N2〉 =

√
N1(N2 + 1)α∗

2,r ′α1,r

〈N1N2|b†
r ′br |N1N2〉 = N1α

∗
1,r ′α1,r + N2α

∗
2,r ′α2,r (A.1)

〈(N1 + 1)(N2 − 1)|b†
r ′br |N1N2〉 =

√
(N1 + 1)N2α

∗
1,r ′α2,r
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and

〈(N1 − 2)(N2 + 2)|b†
r ′

2
b
†
r ′

1
br1br2 |N1N2〉 =

√
N1

2(N2 + 2)2α∗
2,r2

′α
∗
2,r1

′α1,r1
α1,r2

〈(N1 − 1)(N2 + 1)|b†
r ′

2
b
†
r ′

1
br1br2 |N1N2〉

= (N1 − 1)
√

N1(N2 + 1)
(
α∗

1,r2
′α

∗
2,r1

′ + α∗
2,r2

′α
∗
1,r1

′
)
α1,r1

α1,r2

+ N2

√
N1(N2 + 1)α∗

2,r2
′α

∗
2,r1

′
(
α2,r1

α1,r2
+ α1,r1

α2,r2

)
〈N1N2|b†

r ′
2
b
†
r ′

1
br1br2 |N1N2〉
= N1

2α∗
1,r2

′α
∗
1,r1

′α1,r1
α1,r2

+ N2
2α∗

2,r2
′α

∗
2,r1

′α2,r1
α2,r2

+ N1N2
(
α∗

1,r2
′α

∗
2,r1

′ + α∗
2,r2

′α
∗
1,r1

′
)(

α1,r1
α2,r2

+ α2,r1
α1,r2

)
(A.2)

〈(N1 + 1)(N2 − 1)|b†
r ′

2
b
†
r ′

1
br1br2 |N1N2〉

= N1

√
(N1 + 1)N2α

∗
1,r2

′α
∗
1,r1

′
(
α2,r1

α1,r2
+ α1,r1

α2,r2

)
+ (N2 − 1)

√
(N1 + 1)N2

(
α∗

1,r2
′α

∗
2,r1

′ + α∗
2,r2

′α
∗
1,r1

′
)
α2,r1

α2,r2

〈(N1 + 2)(N2 − 2)|b†
r ′

2
b
†
r ′

1
br1br2 |N1N2〉 =

√
(N1 + 2)2N2

2α∗
1,r2

′α
∗
1,r1

′α2,r1
α2,r2

,

with all others zero. For an expectation value (all N ′
s = Ns), equation (11) simplifies to

〈N1 · · · NS |
(

m∏
i=1

b
†
r ′
i

)(
m∏

i=1

bri

)
|N1 · · · NS〉 =

S∑
t ′1,...,t

′
m

t1,...,tm
=1

[
S∏

s=1

δν ′
s ,νs

N
νs

s

] (
m∏

i=1

α∗
t ′i ,r

′
i
αti ,ri

)
.

(A.3)
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